

Contents

"Quantifying the
Naturalness and
Complexity of
Landscape
Photographs using
their
Fractal Dimensions"

1. Definitions:

- a) Naturalness
- b) Complexity
- c) Fractal dimension

2. Research summary

- a) Research questions
- b) Methodology
- c) Results

3. Discussion

Introduction

Landscape preference: Where people like to go, where they choose to live.

Evolutionary psychology:Universal preference for natural environments

Main theories:

- Biophilia (E. O Wilson)
- Prospect-refuge (Appleton)
- Information Processing Theory (Kaplans)

Naturalness

Oxford English Dictionary:

"The quality of possessing the distinctive features of a naturally occurring object, landscape, etc.: the appearance of being unchanged or unspoilt by human intervention."

"how close a landscape is to a **perceived** natural state" (Ode et al., 2009, p. 376)

- subjective
- context-dependent

Naturalness

The importance of vegetation

- Presence
- Proportions
- Forests > Fields

"vegetation can vary along a number of ecological and botanical dimensions. Similarly, a human-induced change can vary in terms of the type and intensity of development where specific human artefacts are involved."

(Purcell and Lamb, 1998, p. 58)

Complexity

Information Processing Theory:

Evolution depends not only on food but also on cognitive processes.

	Understanding	Exploration
Immediate	Coherence	Complexity
Inferred	Legibility	Mystery

Image on the left is high in complexity and low in coherence; Image on the right is high in both.
From Kaplan et al. (1998)

Complexity Preference

Complexity: Diversity, visual variety, richness of the elements and features of the landscape, roughness, information content.

Is it Quantifiable?

Forsythe et al. 2011: Gif compressed size predicts perceived complexity in art.

Fractal Geometry

Concept established by **Benoit Mandelbrot** (1975) **How long is the Coast of Britain?**

"a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a *reduced-size copy* of the whole" (Mandelbrot, 1982).

Fractal Dimension (D): "the object's degree of irregularity and break" (Mandelbrot, 1975)

The Fractal Dimension

Fractal Dimension (Hausdorff dimension):

dimension 'D', multiplication factor 'm' and number of smaller objects 'N':

$$N = m^{D}$$

 $D = \frac{\log N}{\log m}$

Where D is dimension, m the multiplication factor and N the number of smaller objects

Fractal: any object for which the Hausdorff Dimension > topological dimension

The Fractal Dimension

Fractal Dimension (Hausdorff dimension):

dimension 'D', multiplication factor 'm' and number of smaller objects 'N':

$$N = m^{D}$$

$$D = \frac{\log N}{\log m}$$

Where D is dimension, m the multiplication factor and N the number of smaller objects

Fractal: any object for which the Hausdorff Dimension > topological dimension

D = 1.3D - 1,1 D = 1.5D = 1.9

The Fractal Dimension

"When D is near 1 [...], the coastline is too straight to be realistic. On the other hand, the coastline corresponding to D = 1.3 reminds us of the real Atlas" (Mandelbrot, 1982, p. 270).

Mandelbrot's Islands

"The Geometry of Nature"

Structures showing aspects of **self-similarity** in Nature:

- Coastlines
- Rivers
- Mountain ranges
- Clouds
- Ferns
- Trees

But also lungs, blood vessels, and brain folds.

Physical fractals are **scalebound**, **random**, and their symmetry is **approximative**. D can only be **estimated**.

The Box-Counting Method

$$N(d) = \frac{1}{d^D}$$

Where N(d) is the number of boxes of linear size d filled by the pattern.

Only works on binary images with distinct object/background!

The Fractal Dimensions of Landscape Photographs as
Predictors of Preference

Research Summary

Research Questions

1. What is the fractal dimension of a landscape?

- a) How replicable are the results of a fractal analysis of a landscape image?
- b) Is there any correlation between the properties of the landscape being analysed and its fractal dimension?

2. Is it correlated with people's landscape preference?

I= 65

I= 70

I= 8o

I= 90

Methodology

Original image

Extracted edges: D=1.39

Image 1b : Threshold at intensity: 44 D= 1.72

Image 1c : Threshold at intensity: 61 D= 1.561

Silhouette outline: D=1.35

The three greyscale components

Results: Characterizing landscape type

Comparison of D values of Forests and Meadows calculated by five methods

Results: Viewpoints

Outline: [46]: D = 1.00; [47]: D = 1.32 *Edges:* [46]: D = 1.73; [47]: D = 1.74

Outline: [54]: D = 0.99; [55]: D = 1.00 *Edges:* [54]: D = 1.46; [55]: D = 1.61

Two pairs of landscape images with different values of D.

[46]

[47]

[54]

[55]

Results: Factor Analysis

Component 1: Fractal Dimension of the Edges, file size -> Complexity

Component 2: Fractal
Dimension of the
Silhouette Outline,
landscape type ->
Naturalness

Summary of Results

- Different image structures yield different fractal dimensions.
- There is no single fractal dimension of landscapes

Summary of Results

• Forests:

- Higher height of vegetation
- Higher D for outlines but not edges
- Forests equally complex as fields?

Meadows/Fields

- Lower height of vegetation
- Not as natural as forests?

(a) & (b) : D = 1.76

What is Nature /naturalness for you?

